&LACTAM SYNTHESIS: CHEMOSPECIFIC SULFONATION AND CYCLIZATION OF THE β -HYDROXYVALINE NUCLEUS

W. A. Slusarchyk^{*}, T. Dejneka, J. Gougoutas, W. H. Koster, D. R. Kronenthal, M. Malley, M. G. Perri, F. L. Routh, J. E. Sundeen, E. R. Weaver and R. Zahler

The Squibb Institute for Medical Research, P. 0. Box 4000. Princeton, New Jersey 08540

J. D. Godfrey, Jr.*, R. H. Mueller and D. J. Von Langen

The Squibb Chemical *Division, Princeton, New Jersey 08540*

Abstract: The intramolecular cyclization of "hydroxamate" 2 using Mitsunobu conditions was inefficient for the formation and isolation of the C-4 dimethyl monobactam $\frac{4}{1}$. However, chemospecific O-sulfonation of $\frac{3}{1}$ and subsequent cyclization with base provides a useful method for β -lactam synthesis from a stericall hindered B-hydroxy amino acid. Competitive rearrangement of 2 also *occurs* during cyclization providing isomeric β -lactam 5.

Azetidinone-1-sulfates $1¹$ (monosulfactams) are members of a new and potent class of monocyclic β -lactams antibiotics known as monobactams. The C-4 unsubstituted and monomethyl substituted monosulfactams possess high intrinsic antibacterial activity, yet they display both chemical and β -lactamase instability² in marked contrast to azetidinone-1-sulfonates such as aztreonam (2).^{3,4} Although 4,4-dimethyl substitution in azetidinone-1-sulfonates resulted in decreased intrinsic antibacterial activity,⁵ it was hoped that dimethyl substitution at C-4 in the more activated monosulfactam series would result in improved chemical and β -lactamase stability while maintaining high antibacterial activity.

The availability of 3-hydroxyvaline⁶ and the successful use of acyclic amino acid precursors in the synthesis of 1-hydroxyazetidinones⁷ made hydroxamate 3 an attractive intermediate in the synthesis of 4.4-dimethyl substituted monosulfactams. Condensation of (S)-N-BOC-3-hydroxyvaline⁸ with O-benzylhydroxylamine (DCC/HOBT in EtOAc) provided (S)-hydroxamate 3^{9} Cyclization of 3 using Mitsunobu conditions (Ph₃P/CCI₄/Et₃N in CH₃CN or Ph₃P/DEAD (diethylazodicarboxylate) in THF) afforded two isomeric products, ¹⁰ the desired β -lactam (S)-4 and an unprecedented rearrangement product $\frac{1}{2}$, contrary to the recent report by Yoshida et al.¹² Azetidinone 4 could be isolated only in 20-25% yield after repeated chromatography on silica gel using CH_2Cl_2 -EtOAc (10:1) to separate it from isomer 5. The modest yield of $\frac{4}{3}$ and the presence of an isomeric β -lactam component contrasts with the efficient cyclization of hydroxamates derived from primary and secondary hydroxy amino acids such as serine, threonine, and allothreonine.^{7,13}

(a) PhjP, CC14, EtjN. CH,CN or PhJP, DEAD, THF: (b) pyridine * SOj, *pyridine or 2-picoline* * SO9 *MIBK: (c) K₂CO₃, H₂O, EtOAc, 70°C; or K₂B₄O₇, KOH, H₂O, MIBK, pH 8.6-9.0, 70°C.*

Clearly an improved method of cyclization was desirable. Cyclization via mesylate displacement¹³ was not applied, since mesylation (CH₃SO₂Cl, pyridine or Et₃N) of the tertiary alcohol in 3 was nonselective due to steric hindrance. Sulfonation was considered as an alternative for selectively converting the tertiary hydroxyl group in 2 to an effective leaving group. Conceivably, kinetic sulfonation might occur competitively at the hydroxamate, carbamate, and tertiary alcohol centers; however, if under the reaction conditions sulfonation of the amide linkages is reversible, sulfate 6 should be the thermodynamically favored product. Indeed, sulfonation of chiral $(S)-2$ with pyridine SO_3 complex (1.35 equiv.) in pyridine (55°C, 3h) proceeded to yield crude $6a^{14}$ (quantitative yield) after removal of pyridine. Refluxing (2h) crude 6a with K₂CO₃ (6 equiv.) in aqueous EtOAc gave (S)-4 in 50% yield after passage through a pad of silica gel using EtOAc-hexane (3:2) and crystallization from diisopropyl ether. More conveniently, (S)-3 was sulfonated with 2-picoline SO_3 complex¹⁵ (1.2 equiv.) in methyl isobutyl ketone (MIBK) at ambient temperature (1-2h) to give $\underline{6b}$. Addition of water and $K_2B_4O_7$ (4 equiv.), followed by warming to 70°C and subsequent addition of aqueous KOH (2 equiv.) over 45 min, afforded (S)- 4^{16} in 58% yield after

evaporation of the organic phase and crystallization from diisopropyl ether. Although azetidinone $\underline{4}$ is the major product formed in the cyclization of sulfates 6 , a substantial amount of the isomeric β -lactam 5 is found in the mother liquors, and we estimate that under these conditions $\frac{4}{3}$ and $\frac{5}{2}$ are formed in approximately a 2:l ratio.17

Whereas stereochemistry is conserved in the formation of 4 from (S)- 3 , azetidinone 5 was obtained in racemic form from (S)-3 in the redox reaction with $Ph_3P/CCl_4/Et_3N$ or the sulfonation-cyclization $(KOH/K₂B₄O₇)$ sequence. Structure 5 was assigned on the basis of crystallographic analyses, spectral data, and chemical degradation. Although the complete crystal structure of \sum was not solved^{18a}, an analysis based on a pronounced supercell of X-ray intensities revealed all 23 non-hydrogen atoms of the rearranged molecular skeleton, thereby providing the rationale for the following degradation sequence. Mild acid hydrolysis of 5 afforded a product, formulated as hemiaminal $\frac{7a}{10}$, which was converted to $\frac{7b}{10}$ (CH₃OH, p-TsOH), the structure of which was confirmed through X-ray analysis.^{18b} Further acid hydrolysis of $\frac{7a}{6}$ gave aldehyde $\&$ which was then reduced to known alcohol $2^{7,19}$ Interestingly, hemiaminal $\frac{7a}{16}$ and aldehyde 8 are detected in the cyclization of sulfonates 6, presumably as the result of the decomposition of 5.

(d) 1N HCI, EtOAc; (e) conc. HCI, H₂O, CH₃CN; (f) NaBH₄, H₂O, THF.

The availability of intermediate 4 , using the above route, allowed the preparation of a variety of potent antibiotics having activity against gram-negative bacteria. These compounds are stable to both chemical and β -lactamase-mediated hydrolysis. A member of this series, SQ 30,213 (10), is highly orallyabsorbed in a variety of animal models and is currently undergoing preclinical evaluation.²⁰

References and Notes:

- E. M. Gordon, M. A. Ondetti, J. Pluscec, C. M. Cimarusti, D. P. Bonner, and R. B. Sykes, *J. Am. Chem. Soc.*, 1982, 104, 6053.
- W. A. Slusarchyk, T. Dejneka, E. M. Gordon, E. R. Weaver, and W. H. Koster. *Heterocycles,* **1984, 21,** 191; F. G. Pilkiewicz, unpublished results.
- *J. Antimicrob. Chemother.,* **1981, 8** *(Suppl. E),* **1.** "Aztreonam, a Synthetic Monobactam" (Ed, R. B. Sykes and I. Phillips).
- 4. W. H. Koster, C. M. Cimarusti, and R. B. Sykes in "Chemistry and Biology of β -Lactam Antibiotics", Vol. 3 (Ed. R. B. Morin and M. German), pp. 339-374. Academic Press, New York (1982).
- 5. C. M. Cimarusti, D. P. Bonncr, H. Brcuer, H. W. Chang, A. W. Fritz, D. M. Floyd, T. P. Kissick. W. H. Koster, D. Kronenthal, F. Massa, R. H. Mueller, J. Pluscec, W. A. Slusarchyk, R. B. Sykes, M. Taylor, and E. R. Weaver, *Tetrahedron,* 1983. *39, 2571.*
- 6. A. Shanzer, L. Somekh, and D. Butina. J. Org. Chem., 1979. 44, 3967; K. E. Harding, L. N. Moreno. and V. M. Nace, J. Org. Chem., 1981, 46, 2809; J. Oh-Hashi and K. Harada, Bull. Chem. Soc. Jpn., 1966, 39, 2287; H. C. Beyerman. L. Maat, D. De Rijke. amd J. P. Visser. *Rec. Trav.* Chim., 1967, 86. 1057.
- M. J. Miller, P. G. Mattingly, M. A. Morrison, and J. K. Kerwin, Jr., J. *Am. Chem. Sot., 1980, 102, 7026.*
- (S)-N-BOC-3-hydroxyvaline (mp 120-121 $^{\circ}$ C; [α]_n= +7.81 $^{\circ}$ (c = 2.16, EtOAc), >99% optical purity) was obtained from d.l-3-hydroxyvaline and (BOC)₂0 in t-butanol/water at pH 10.0 followed by resolutio as its S-(-)- α -methylbenzylamine salt.
- SELECTED DATA: 3, mp 104-105°C; $[\alpha]_p = +7.2^{\circ}$ (c $CH₂Cl₂:THF$, 94:6); IR (CHCl₃) 1770, 1713 cm⁻¹; ¹ $= 2.0$, EtOAc); 4, mp 121-122^oC; R, 0.39 (silica gel, H NMR (CDCl₃, 270 MHz) δ 1.10 (s, 3 H), 1.32 (s, 3 H), 1.44 (s, 9 H), 4.29 (br s, 1 H), 4.97 (s, 2H), 5.03 (br s, 1 H), 7.39 (s, 5 H); ¹³C NMR (CDCl) 61.8 I&z) d 162.30, i55.55, 133.28. li9.23, li9.00:128.55, 80145, 78.92, 67.87, 62766 28.17 23.26 lbfb9. 5, *mp* 109-111^oC; R, 0.43 (silica gel, CH₂Cl₂:THF, 94:6); IR (CHCl₂) 1778, 1719 cm⁻¹; 270 MHz) δ 1.07 (s, 3 H), 1.22 (s, 3 H), 1.47 (s, 9 H), 4.32 (br s, 1 ¹³C NMR (CDCl H), \cdot ¹; ¹H NMR (CDCl₃ 4.94, 4.96 (AB q, $J_{AB} = 11$ Hz, 2 H 5.04 (br s, 1 H), 7.41 (s, 5 H); ¹³C NMR (CDCl₃, 67.8 MHz) δ 169.48, 154.39, 135.17, 129.33, 129.14, 128.64, 80.65, 77.75, 72.56, 49.91, 28.20, 20.35, 17.26.
- 10. We obtained <u>4</u> and 5, using Ph₃P/CCl₄/Et₃N conditions, as a crystalline mixture (1:1) in 76% yield after silica gel chromatography (benzene:EtOAc, 85:15). The identical reaction is reported to give amorphous silica gel chromatography (benzene: EtOAc, 85:15). The identical reaction is reported to give amorphous 4 in *64%* yield after chromatography (reference 12).
- 11. For the mechanism of the formation of 5 see, J. D. Godfrey, Jr., R. H. Mueller, and D. J. Von Langen, following paper in this issue.
- 12. C. Yoshida, T. Hori, K. Momonoi. K. Nagumo, J. Nakano, T. Kitani, Y. Fukuoka, and I. Saikawa, *J. Antibiotics,* 1985, 38, 1536.
- 13. D. M. Floyd, A. W. Fritz, J. Pluscec, E. R. Weaver, and C. M. Cimarusti, J. *Org. Chem., 1982, 47, 5160.*
- 14.¹³C NMR (CD₃CN) spectral comparisons showed the expected shift of the quaternary C-3 valine carbon from 72.41 δ in 3 to 83.52 δ in 6a.
- 15. The 2-picoline SO_2 complex was prepared from chlorosulfonic acid and 2-picoline (2.5 equiv.) at -78°C in MIBK followed by warming to room temperature.
- 16. No racemization occurred on cyclization of (S)-2 using this route or the procedure involving sequential treatment with pyridine SO_3 and aqueous K_2CO_3/EtO Ac as ascertained by chiral shift studies using Similarly, no racemization occurred on cyclizatio
- 17. The estimation of the ratio of $\frac{4}{3}$ to $\frac{5}{2}$ is based upon the actual isolated yield of $\frac{4}{3}$ and TLC analysis of the mother liquors. The chemical instability of 5 under the reaction conditions *(vide infra)* precludes a more accurate determination of the product distribution (e. g., by H HMR spectral analysis).
- 18. (a) $a = 18.09$, $b = 19.29$, $c = 10.55$ Å, $\beta = 95.6^{\circ}$ ($Z = 8$); all *l*-odd reflections were ignored and a subcell was chosen with $c' = c/2$, space group P2₁/n, Z = 4; (b) $a = 11.557$ (5), $b = 19.101$ (8), $c = 9.910$ (3) Å, β = 115.37 (3)°, space group P2,/c, Z = 4, R = 0.06 for 1349 observed intensitie
- 19. The methyl resonance in the ¹H NMR of compound 37 (our structure 2) reported in reference 7 should be corrected from 1.3 to 1.13 δ (M. J. Miller, private communication).
- 20. W. H. Koster, W. A. Slusarchyk, T. Dejneka, D. Kronenthal, M. G. Perri, F. G. Pilkiewicz, F. L. Routh, J. E. Sundeen, E. R. Weaver, and R. Zahler, Abstracts, 25th Intersci. Conf. Antimicrob. Agents and Chemother., No. 368, Sept. 1985.

(Received in USA 4 February 1986)