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Abstract: The intramolecular cyclization of “hydroxamate” 2 using Mitsunobu conditions was inefficient for 
the formation and isolation of the C-4 dimethyl monobactam 3. However, chemospecific 0-sulfonation of 2 
and subsequent cyclization with base provides a useful method for &lactam synthesis from a sterically 
hindered B-hydroxy amino acid. Competitive rearrangement of 2 also occurs during cyclization providing 
isomeric j3-lactam 5. 

Azetidinone-l-sulfates 1’ (monosulfactams) are members of a new and potent class of monocyclic 

@-lactams antibiotics known as monobactams. The C-4 unsubstituted and monomethyl substituted mono- 

sulfactams possess high intrinsic antibacterial activity, yet they display both chemical and fl-lactamase 

instability2 in marked contrast to azetidinone-1-sulfonates such as aztreonam (a.334 Although 

4,4-dimethyl substitution in azetidinone-1-sulfonates resulted in decreased intrinsic antibacterial activity,5 

it was hoped that dimethyl substitution at C-4 in the more activated monosulfactam series would result in 

improved chemical and &lactamase stability while maintaining high antibacterial activity. 

1 R,,R, = H or CH, 2 CH3 * COOH 
CH, 
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The availability of 3-hydroxyvaline6 and the successful use of acyclic amino acid precursors in the 

synthesis of I-hydroxyazetidinones7 made hydroxamate 2 an attractive intermediate in the synthesis of 

4,4-dimethyl substituted monosulfactams. Condensation of (S)-N-BOC-3-hydroxyvaline8 with O-benzyl- 

hydroxylamine (DCC/HOBT in EtOAc) provided (S)-hydroxamate 2.’ Cyclization of 2 using Mitsunobu 

conditions (Ph3P/CC14/Et3N in CH3CN or Ph3P/DEAD (diethylazodicarboxylate) in THF) afforded two 

isomeric products, lo the desired 8-lactam (S)-4 and an unprecedented rearrangement product 5,” con- 

trary to the recent report by Yoshida et 01.12 Azetidinone 4 could be isolated only in 20-25% yield after 

repeated chromatography on silica gel using CH2C12-EtOAc (1O:l) to separate it from isomer 2. The 

modest yield of 3 and the presence of an isomeric fl-lactam component contrasts with the efficient cycliza- 

tion of hydroxamates derived from primary and secondary hydroxy amino acids such as serine, threonine, 

and allothreonine.7*‘3 
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(a) PhjP, CC14, EtjN. CH,CN or PhJP, DEAD, THF: (b) pyridine * SOj, pyridine or 2-picoline * SO9 MIBK: 

(c) K2C03. H20. EtOAc, 7O’C; or K2B407, KOH, H20, MIBK, pH 8.6-9.0, 70°C. 

Clearly an improved method of cyclization was desirable. Cyclization via mesylate displacementf3 was 

not applied, since mesylation (CH3S02Cl, pyridine or Et3N) of the tertiary alcohol in 2 was nonselective 

due to steric hindrance. Sulfonation was considered as an alternative for selectively converting the 

tertiary hydroxyl group in 2 to an effective leaving group. Conceivably, kinetic sulfonation might occur 

competitively at the hydroxamate, carbamate, and tertiary alcohol centers; however, if under the reaction 

conditions sulfonation of the amide linkages is reversible, sulfate 6 should be the thermodynamically 

favored product. Indeed, sulfonation of chiral (S)-2 with pyridine . SO3 complex (1.35 equiv.) in pyridine 

(WC, 3h) proceeded to yield crude &14 (quantitative yield) after removal of pyridine. Refluxing (2h) 

crude &with K2C03 (6 equiv.) in aqueous EtOAc gave @)-A in 50% yield after passage through a pad of 

silica gel using EtOAc-hexane (3:2) and crystallization from diisopropyl ether. More conveniently, (S)-2 

was sulfonated with 2-picoline . SO3 complex I5 (1.2 equiv.) in methyl isobutyl ketone (MIBK) at ambient 

temperature (I-2h) to give &. Addition of water and K2B407 (4 equiv.), followed by warming to 70°C 

and subsequent addition of aqueous KOH (2 equiv.) over 45 min, afforded (S)-416 in 58% yield after 
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evaporation of the organic phase and crystallization from diisopropyl ether. Although azetidinone 4 is the 

major product formed in the cyclization of sulfates & a substantial amount of the isomeric fl-lactam 5 is 

found in the mother liquors, and we estimate that under these conditions 4 and 2 are formed in approxi- 

mately a 2:l ratio.17 

Whereas stereochemistry is conserved in the formation of 4_ from (S)-L, azetidinone 2 was obtained in 

racemic form from (S)-2 in the redox reaction with Ph3P/CC14/Et3N or the sulfonation-cyclization 

(KOH/K2B407) sequence. Structure 2 was assigned on the basis of crystallographic analyses, spectral data, 

and chemical degradation. Although the complete crystal structure of 2 was not solved18a, an analysis 

based on a pronounced supercell of X-ray intensities revealed all 23 non-hydrogen atoms of the rearranged 

molecular skeleton, thereby providing the rationale for the following degradation sequence. Mild acid 

hydrolysis of 2 afforded a product, formulated as hemiaminal &, which was converted to a (CH30H, 

p-TsOH), the structure of which was confirmed through X-ray analysis.lsb Further acid hydrolysis of h 

gave aldehyde &which was then reduced to known alcohol e7,1g Interestingly, hemiaminal & and aldehyde 

8 are detected in the cyclization of sulfonates $, presumably as the result of the decomposition of 5. 

&H,Ph &ZH,Ph bCH2Ph 

7a; R=H 8 9 
7J; R=CH, 

(d) 1N HCI, EtOAc; (e) cont. HCI, HtO, CH&N; (f) NaBHq, H20, THF. 

The availability of intermediate $, using the above route, allowed the preparation of a variety of 

potent antibiotics having activity against gram-negative bacteria. These compounds are stable to both 

chemical and p-lactamase-mediated hydrolysis. A member of this series, SQ 30,213 (J.Q), is highly orally- 

absorbed in a variety of animal models and is currently undergoing preclinical evaluation. 20 

SQ 30,213 (u) 
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